External Evaluation of the Research-Validated Approach to Instruction for Secondary Excellence in Texas

2011–2014 Demonstration Project

Midproject Report August 2013

External Evaluation of the

Research-Validated Approach to Instruction for Secondary Excellence in Texas

2011–2014 Demonstration Project

Midproject Report August 2013

The Meadows Center for Preventing Educational Risk

Sharon Vaughn, Ph.D. Executive Director

Greg Roberts, Ph.D. Associate Director

Sarojani Mohammed, Ph.D. Assistant Director

Preferred Citation

Lopez, M., Mohammed, S. S., & Van Kummer, D. (2013). *External evaluation of the Research-Validated Approach to Instruction for Secondary Excellence in Texas 2011–2014 demonstration project: Midproject report*. Austin, TX: The Meadows Center for Preventing Educational Risk.

Executive Summary

The Research-Validated Approach to Instruction for Secondary Excellence in Texas (*RAISE^{up} Texas*) project is a regional demonstration, or pilot implementation, of the Strategic Instruction Model Content Literacy Continuum (SIM/CLC) in eight central Texas middle schools. SIM/CLC is a schoolwide instructional framework to improve adolescents' content literacy. This evaluation report summarizes the first and second years of implementation of *RAISE^{up} Texas*.

SIM/CLC was implemented schoolwide in all grades (sixth through eighth grades) and in all content areas. Year 1 (2011–2012) of implementation included eight middle schools across six school districts. Due to attrition, year 2 (2012–2013) included seven middle schools. To evaluate the effects of SIM/CLC, participating schools were matched and compared with nonproject schools with similar demographics.

The Meadows Center for Preventing Educational Risk conducts the external evaluation of the middle school implementation of *RAISE*^{up} *Texas*. This evaluation is designed to answer the following research questions:

- 1. What are the levels of fidelity and dosage of SIM/CLC at participating campuses?
- 2. What are the perceived benefits of SIM/CLC?
- 3. Is SIM/CLC implementation related to improved student academic outcomes or student behaviors?

We used qualitative measures to address the first two questions. A total of 150 external classroom observations across all project schools showed substantial improvement in implementation. By the end of year 2, all project schools implemented at the advanced level. Biannual staff interviews with students verified the benefits of the SIM/CLC devices and routines. Students consistently reported the nature in which the Unit Organizer and FRAME devices bolstered their learning preparedness, study skills, and exam review strategies.

We used quantitative measures to answer the last research question: "Is SIM/CLC implementation related to improved student academic outcomes or student behaviors?" Year 1 of implementation yielded slight but notable gains for project schools in sixth-grade reading scores on the State of Texas Assessments of Academic Readiness (STAAR) and a considerable increase in the percentage of students meeting 2011 Texas Assessment of Knowledge and Skills state standards. Struggling students exhibited the most substantial growth in reading achievement – increases in percentile rank of 3 to 6 points. Passing rates of project schools exceeded those of the matched nonproject schools in mathematics, seventh-grade writing, and eighth-grade science.

By the end of year 2, positive growth trends in reading achievement for at-risk students persisted in schools implementing SIM/CLC. On the Gates-MacGinitie assessment, struggling sixth- and seventh-grade students' percentile rank increased by 5 to 7 points. STAAR mathematics, writing, and science subscale analyses will be conducted upon availability of 2013 STAAR scale scores.

Introduction

The Research-Validated Approach to Instruction for Secondary Excellence in Texas (*RAISE^{up} Texas*) project is a collaboration of six central Texas school districts, Education Service Center Region 13, the E3 Alliance, and The Meadows Center for Preventing Educational Risk (MCPER). The *RAISE^{up} Texas* project is a regional demonstration, or pilot implementation, of the Strategic Instruction Model Content Literacy Continuum (SIM/CLC) in eight central Texas middle schools. SIM/CLC is a schoolwide instructional framework to improve adolescents' content literacy. The University of Kansas Center for Research of Learning developed and validated SIM/CLC. MCPER conducts the external evaluation of *RAISE^{up} Texas* across all project schools, grades, and disciplines; the evaluation ranges 3 years (2011–2014). This evaluation report summarizes the first and second years of implementation of *RAISE^{up} Texas*.

SIM/CLC

SIM/CLC is a series of strategies and routines to improve students' content literacy. SIM/ CLC offers an instructional model for whole-school reform by providing both teacher- and student-focused routines and strategies that allow for tiered, student-focused interventions in all content areas. Examples of these routines are presented later in this report.

As part of *RAISE^{up} Texas*, certified SIM/CLC professional development experts train teachers and staff members on multiple components and strategies to be implemented in SIM/CLC classrooms. Additionally, school SIM/CLC coaches at all participating campuses provide assistance to trained teachers on SIM/CLC materials and strategies. These SIM/CLC coaches are training to become SIM/CLC professional developers.

SIM/CLC-trained teachers are expected to incorporate content enhancement routines into their class lectures. These sets of practices and organizational materials help with the presentation of course content to students. Content enhancement routines are especially useful teaching tools because the content can be directed to students at any instructional level. Proper classroom implementation of these routines is believed to be crucial for successful school reform.

Implementation of the content enhancement routines centers on three devices: the Course Organizer, the Unit Organizer, and the Lesson Organizer. To facilitate concept mastery, students and teachers co-create these organization devices. For *RAISE^{up} Texas*, the first year of project implementation focused on the introduction of the Course Organizer and Unit Organizer into classrooms. Both of these devices provide an instructional map that allows teachers to plan content around topics essential to the course. As seen in the Appendix, the two-page Unit Organizer maps out the topics, methods, questions, and schedule for a particular unit. The example Unit Organizer in the Appendix is for lessons on ancient Greece.

For the second year of this project, teachers were required to implement a second SIM/ CLC device in their classroom, and many of the participating schools chose to implement the FRAME device. Like the Unit Organizer, teachers and students co-create the FRAME device. This device presents a general topic and provides students with opportunities to break down this topic into main ideas and details. The Appendix also provides an example of the FRAME device.

The content enhancement process incorporates the Cue Do Review routine, which teaches content through the following steps:

1. Cue: Teachers remind students about the learning device they are using.

- 2. Do: Teachers co-create the device with students.
- 3. Review: Teachers and students discuss the content of the device.

The Cue Do Review routine is an essential part of SIM/CLC implementation.

More targeted routines are implemented with the content enhancement routines. Struggling students, or those at risk, are also taught learning strategies, which help students extract content knowledge from text. These learning strategies include Paraphrasing, Word Identification and Mapping, and Self-Questioning. Teachers, usually in intervention groups, explain the strategies to students; however, it is up to the students to apply the learning strategies when reading. SIM/CLC includes a variety of these strategies, and no minimum number of strategies was required to be implemented for *RAISE^{up} Texas*. The Appendix shows a list of SIM/CLC learning strategies, along with stages of instruction.

Logic Model

The logic model developed for *RAISE^{up} Texas* was used as both a planning tool and a guiding tool for the current evaluation. Input from various stakeholders was included in the development of the logic model. These stakeholders included district representatives and school principals from participating districts, members of the *RAISE^{up} Texas* steering committee (E3 and Education Service Center Region 13 representatives), and funders of the project. A priori development of the logic model facilitated alignment of the project's resources, expectations, and long-term impacts. The logic model was developed at a half-day meeting on June 9, 2011, before the *RAISE^{up} Texas* project began implementation in the six school districts.

The present evaluation analyzes the effectiveness of SIM/CLC implementation at both the school level and the regional level, as seen in Figure 1. This logic model was used for year 1 and year 2 of the project.

Figure 1. RAISE^{up} Texas project logic model

Regional Elements

The regional components of the project are the more global contexts, activities, and impacts of SIM/CLC implementation across multiple districts. *RAISE^{up} Texas* is expected to train and support SIM/CLC professional developers in the region, including offering regular SIM/CLC conferences.

Regional outcomes expected from SIM/CLC implementation include: (1) increased collaboration and communication across participating schools, (2) increased sharing of resources across participating schools, (3) improved alignment of intervention practices across the region, and (4) increased professional developer and principal collaboration. Long-term impacts of the *RAISE^{up} Texas* project include the embedding of SIM/CLC across the region, increased regional awareness of SIM/CLC practices, and increased use of SIM/CLC regionally.

School Elements

The school-level components of the logic model emphasize student- and teacher-related outcomes of *RAISE^{up} Texas*. This level includes the activities of teachers, staff members, and students in the participating schools. Contexts that affect SIM/CLC implementation at the school level include populations of traditionally high-need students (students with limited English proficiency, low socioeconomic status, or high mobility). Reading achievement gaps in participating schools also affect SIM/CLC implementation. Activities at the school level include ongoing teacher support for SIM/CLC strategies, consistent teacher training in SIM/CLC, and feedback on SIM/CLC implementation for teachers. Most importantly, the project expects SIM/CLC to be implemented in all classrooms across all participating schools. Each school is required to have an onsite SIM/CLC coach and a literacy leadership team (LLT) to guide and support SIM/CLC implementation at the school.

Implementation of this project is expected to produce: (1) teacher collaboration through the use of SIM/CLC support systems; (2) increased student engagement, as measured by class participation and attendance; (3) increased academic achievement, as measured by reading achievement and growth; and (4) decreased special education and "did not qualify" referrals. Long-term impacts of *RAISE^{up} Texas* include multidisciplinary SIM/CLC use, improved student behavior, better high school outcomes, and higher enrollment in college preparatory courses.

Purpose of the Evaluation

Year 1 (2011–2012) of implementation of the *RAISE^{up} Texas* project included eight middle schools across six school districts. In these schools, SIM/CLC was implemented schoolwide in all grades (sixth through eighth grades) and in all content areas. Each participating school was matched with a nonproject school; the matching procedure is described later in this report. Year 2 (2012–2013) of the project experienced attrition, leaving seven middle schools to continue schoolwide SIM/CLC implementation. Nonproject school matches were adjusted in response to this attrition.

Based on the *RAISE^{up} Texas* logic model, MCPER's external evaluation answers the following research questions:

- 1. What are the levels of fidelity and dosage of SIM/CLC at participating campuses?
- 2. What are the perceived benefits of SIM/CLC?
- 3. Is SIM/CLC implementation related to improved student academic outcomes or student behaviors?

MCPER used a theory-driven, mixed-methods approach to evaluate *RAISE^{up} Texas* implementation of the SIM/CLC model and to estimate outcomes of this implementation. We measured indicators derived from the logic model to answer the three research questions.

Table 1 lists the indicators that correspond to the outputs, outcomes, and impacts in the logic model, along with their sources for this evaluation. Due to the distal nature of impacts and the relatively short length of the project, not all impacts were or will be measured, and none are measured before the outcomes that lead to them show positive changes.

Table 1. Logic model indicators

Element	Indicator	Source						
	Outputs							
14	Count of SIM/CLC professional developers trained by RAISE ^{up} Texas	Project Office						
15	Count of SIM/CLC regional conferences held locally and regionally	Project Office						
16	Count of schools implementing SIM/CLC	Education Service Center Region 13						
17	Count of teachers creating Unit Organizers	HALO teacher interview						
18	Count of classes in which SIM/CLC strategies are taught	Observation rubric, focus group						
19	Count of students using SIM/CLC strategies	Observation rubric, HALO student interview						
Outcomes								
20	Count of regional meetings, training sessions, group discussions, etc., facilitated by RAISE^{up} Texas	Project Office, district and teacher survey						
21	Count of training sessions, discussions, etc., focused on SIM/CLC professional development facilitated by RAISE^{up} Texas	Project Office, district and teacher survey						
22	Count of principal-to-principal contacts facilitated by RAISE ^{up} Texas	Principal survey						
23	Count of teacher-to-teacher contacts facilitated by RAISE^{up} Texas	Focus group						
24	Student perceptions of their participation in class and count of documented absences	HALO student interview, school and district records						
25	STAAR scores and Gates-MacGinitie scores (high-need students)	School and district records						
26	Count of students referred to but not qualifying for special education services (including SLD only when known) and count of special education referrals	School records						
	Impacts							
30	Count of students who used SIM/CLC strategies in classes in which strategies were not explicitly taught	HALO student interviews						
31	Number of discipline referrals	School records						

Note. HALO = high, average, low, other; STAAR = State of Texas Assessments of Academic Readiness; SLD = specific learning disability.

Evaluation Procedures

Qualitative Data Procedures

Once per semester, project evaluators conducted walkthrough observations in each project school; evaluators were trained to complete an assortment of checklists for SIM/CLC devices and procedures. Interrater reliability was obtained through a consensus procedure during the training session, before the walkthroughs. Each walkthrough consisted of the following:

- Observing and completing a Cue Do Review Checklist for five to seven classrooms
- Receiving and completing a device checklist for a Unit Organizer and a FRAME device
- Observing or reviewing notes from an LLT meeting at the school

The Appendix contains samples of the checklists provided for the walkthroughs. The University of Kansas Center for Research of Learning designed these checklists to measure the fidelity of SIM/CLC procedure and device implementation in classrooms.

Quantitative Data Procedures

Quantitative analysis used a quasi-experimental design, in which a matched comparison group of schools was identified as a "focal, local" comparison. To create this comparison group, schools were matched on several variables (listed below in order). We used the most recent data available in the summer of 2011 to determine these matches. Whenever possible, MCPER matched a project campus to a school in the same district, allowing evaluators to minimize the influence of unmeasured contextual district factors on implementation of SIM/ CLC. In all cases, the identified match schools were in the Education Service Center Region 13 service area. Schools were matched on the following variables:

- Demographics
 - Student population (number of students)
 - Socioeconomic status and economically disadvantaged percentage
 - Bilingual and limited English proficient percentage
 - Mobility percentage
 - Ethnic makeup of student population
 - » Number and percentage of Hispanic students
 - » Number and percentage of African American students
 - » Number and percentage of white students
 - » Number and percentage of Asian/Pacific Islander students
 - » Number and percentage of Native American students
- Historical scores on the Texas Assessment of Knowledge and Skills (TAKS)
 - 2010 reading: percentage of students passing standard
 - 2009 reading: percentage of students passing standard
 - 2008 reading: percentage of students passing standard

At times, schools with seemingly disparate student populations were matched – but only when no similarly sized school matched well on other important criteria (e.g., socioeconomic status and economically disadvantaged percentage). No specific cut points were implemented; instead, the overall similarity of the match school and project school was considered.

Participants

Evaluation analyses were conducted for eight project schools (treatment group) and eight match schools (comparison group). Characteristics of the project and match schools are shown in Table 2.

Cohort	School	Total students	EcoDis	LEP	H	AA	W	A/PI	NA	SPED	At riskª	TAKS 2010	TAKS 2009	TAKS 2008	# Teacher FTEsª
Austin															
Project	Burnet	960	94	43	79	14	5	2	0	12	76	67	74	78	74.0
Match	Mendez	865	94	46	89	9	1	0	0	11	81	65	72	78	71.8
Project	Dobie	597	96	43	82	12	4	2	0	11	74	74	82	82	46.7
Match	Martin	677	95	25	87	10	1	1	0	19	73	72	79	81	58.0
Project	Kealing	1,240	44	7	32	19	38	10	0	5	29	91	93	93	92.8
Match	Fulmore	1,010	76	26	73	9	16	2	0	11	60	81	86	86	72.7
Eanes															
Project	Hill Country	909	3	2	8	1	83	8	0	7	6	99	99	99	72.3
Match	Dripping Springs ^b	1,000	10	2	13	1	84	1	0	10	21	96	97	97	55
						Н	ays								
Project	Simon	468	76	25	84	4	11	0	0	13	58	76	-	-	41.7
Match	Decker ^b	607	84	27	61	28	8	2	0	7	56	74	78	-	40.2
						Lea	nder								
Project	Wiley	1,075	21	2	21	5	71	2	0	8	27	96	99	96	67.5
Match	Henry	1,290	21	2	18	7	68	7	1	9	26	96	98	98	83.0
						Roun	d Rock	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>							
Project	Hernandez	836	61	14	51	17	26	2	0	15	-	86	-	-	62.5
Match	Westview ^b	859	69	22	53	22	15	10	0	13	51	85	91	92	56.5
						San	Marcos								
Project	Goodnight	894	71	7	73	5	21	1	0	10	44	89	93	91	69.6
Match	Lockhart ^b	1,038	66	5	59	7	34	0	0	12	37	87	92	95	66

Table 2. Year 1 RAISE^{up} Texas sample characteristics

Note. EcoDis = percentage of students economically disadvantaged; LEP = percentage of students with limited English proficiency; H = percentage of Hispanic students; AA = percentage of African American students; W = percentage of white students; <math>A/PI = percentage of Asian/Pacific Islander students; NA = percentage of Native American students; SPED = percentage of students receiving special education services; at risk = percentage of students at risk for academic failure; TAKS = percentage of students meeting the state standard (passing) on the Texas Assessment of Knowledge and Skills reading test; # teacher FTEs = number of teachers at the school in full-time equivalent units.

^aAt-risk and teacher FTE percentages were included for descriptive purposes but were not used in the matching process.

^bMatched comparison school is not from the same district but is in the Education Service Center Region 13 service area.

As noted previously, participating schools experienced attrition in the second year of the project, reducing the treatment sample from eight to seven. Furthermore, in year 1, evaluators could not obtain referral data from two of the match schools in nonproject districts. Project schools and their corresponding matches were adjusted to reflect these changes in year 2. Characteristics of the year 2 sample are shown in Table 3.

Cohort	School	Total students	EcoDis	LEP	H	AA	W	A/PI	NA	SPED	At riskª	TAKS 2010	TAKS 2009	TAKS 2008	# Teacher FTEsª
	Austin														
Project	Burnet	960	94	43	79	14	5	2	0	12	76	67	74	78	74.0
Match	Mendez	865	94	46	89	9	1	0	0	11	81	65	72	78	71.8
Project	Dobie	597	96	43	82	12	4	2	0	11	74	74	82	82	46.7
Match	Martin	677	95	25	87	10	1	1	0	19	73	72	79	81	58.0
Eanes															
Project	Hill Country	909	3	2	8	1	83	8	0	7	6	99	99	99	72.3
Match	West Ridge	838	3	1	9	1	77	13	2	10	15	-	-	99	65.5
Hays															
Project	Simon	468	76	25	84	4	11	0	0	13	58	76	-	-	41.7
Match	Decker⁵	607	84	27	61	28	8	2	0	7	56	74	78	-	40.2
						Lea	nder								
Project	Wiley	1,075	21	2	21	5	71	2	0	8	27	96	99	96	67.5
Match	Henry	1,290	21	2	18	7	68	7	1	9	26	96	98	98	83.0
						Rour	nd Rock	(
Project	Hernandez	836	61	14	51	17	26	2	0	15	-	86	-	-	62.5
Match	Westview ^b	859	69	22	53	22	15	10	0	13	51	85	91	92	56.5
						San	Marcos	;							
Project	Goodnight	894	71	7	73	5	21	1	0	10	44	89	93	91	69.6
Match	Fulmore ^b	1,010	76	26	73	9	16	2	0	11	60	81	86	86	72.7

Table 3. Year 2 RAISE^{up} Texas sample characteristics

Note. EcoDis = percentage of students economically disadvantaged; LEP = percentage of students with limited English proficiency; H = percentage of Hispanic students; AA = percentage of African American students; W = percentage of white students; A/PI = percentage of Asian/Pacific Islander students; NA = percentage of Native American students; SPED = percentage of students receiving special education services; at risk = percentage of students at risk for academic failure; TAKS = percentage of students meeting the state standard (passing) on the Texas Assessment of Knowledge and Skills reading test; # teacher FTEs = number of teachers at the school in full-time equivalent units.

^aAt-risk and teacher FTE percentages were included for descriptive purposes but were not used in the matching process.

^bMatched comparison school is not from the same district as treatment school but is in the Education Service Center Region 13 service area.

Findings

Qualitative Data Analysis

Observation data were used to answer the formative research question: "What are the levels of fidelity and dosage of SIM/CLC at participating campuses?" To date, 150 external classroom observations have been conducted: 28 during the fall of 2011, 39 in the spring of 2012, 40 in the fall of 2012, and 43 in the spring of 2013. Figure 2 shows the frequency with which SIM/CLC devices or routines were observed in participating *RAISE^{up} Texas* schools during the first 2 years of the project.

Figure 3 summarizes the content areas taught in the classrooms observed in walkthroughs during the first 2 years of the project.

Scores on the Cue Do Review Observation Checklist were used to sort implementation into the following three categories:

1. Beginning: None or very few classrooms seen implementing devices or Cue Do Review

- 2. Intermediate: Some of the classrooms seen implementing devices or Cue Do Review
- 3. Advanced: Almost all classrooms seen implementing devices or Cue Do Review

Table 4 illustrates the categorization of schools, based on completed Cue Do Review Checklists. Observations during the fall and spring of the first year found all project schools to be at a beginning or intermediate level of fidelity, where evidence of implementation was not consistently witnessed throughout the schools. This finding was expected because many of the campuses had never implemented SIM/CLC before.

The second year of the project saw considerable improvement in the consistency of SIM/CLC implementation across all campuses. Observation checklists recorded increased student participation in observed classrooms and more evidence of SIM/CLC devices and practices across classrooms. Most importantly, SIM/CLC was used across many classrooms within the same school, and across sections, grade levels, and content areas – evidence that implementation was seen as a schoolwide effort.

		Yea	ar 1	Yea	ar 2
		Fall 2011	Spring 2012	Fall 2012	Spring 2013
	Beginning	 No evidence of Cue Do Review Consistent use of Unit Organizers observed in < 50% of classes Displayed but not used in instruction Variations in implementation across teachers Minimal use of FRAME 	All observed classes implementing at intermediate or advanced level	All observed classes implementing at intermediate or advanced level	All observed classes implementing at advanced level
Level of implementation fidelity	Intermediate	 Evidence of a range of SIM/CLC strategies and enhancements Teachers familiar with framework and used it in class Consistent use of Unit Organizers observed in > 50% of classes (100% in two schools) More common use of FRAME (40% of classes in two schools) 	 Highly consistent use of Unit Organizers Unit Organizers observed in > 70% of classes Teachers knew the routines/ strategies and used them often (one principal helped create a Unit Organizer) Unit Organizer use evident in students' questions, participation, and engagement 	 Highly consistent use of Unit Organizers and FRAME observed in 90% classes Unit Organizers observed in 65% of classes FRAME observed in 25% of classes Co-construction of devices observed in 60% of classes 	All observed classes implementing at advanced level
	Advanced	No observed classes implementing at advanced level	 Elements of Cue Do Review observed in > 70% of classes Teachers cued devices in 60% of observed classes Students recognized devices in > 70% of classes Teachers monitored student construction in > 50% of classes 	 Evidence of Cue Do Review observed in > 90% of classes Students engaged in 75% of observed classes Teachers linked device to learning in 40% of observed classes 	 Evidence of Cue Do Review observed in > 90% of classes Teachers linked device to learning in > 40% of observed classes Increased focus on explaining rationale of devices

Table 4. Level of implementation fidelity for years 1 and 2 across all project schools

Figure 4 graphs fidelity trends for years 1 and 2. By the end of year 2, all seven project schools implemented at an advanced level.

Figure 4. Implementation fidelity for years 1 and 2 across project schools

Note. The number of participating campuses changed from eight in year 1 to seven in year 2; this change is detailed elsewhere in this report.

In each semester, the LLT members on each campus conducted interviews with students regarding their use of individual devices and the impact of devices on learning. The LLT selected and categorized the sample of students interviewed as "high," "average," "low," and "other" (HALO). These interviews were conducted in a formative (program improvement) setting and are shared here only for informational purposes – not as formal analyses conducted during the evaluation. The interviews addressed the second question of the *RAISE*^{up} *Texas* project: "What are the perceived benefits of SIM/CLC?" The interviews focused on the following questions:

- Has the student used the device before?
- In which classes did the student use the device?
- In which classes was the device used most?
- How do teachers use the device during class?
- How do the devices and routines aid student learning?
- Which devices are preferred and why?

In year 1, the Unit Organizer was predominately used in classrooms. The FRAME device was used less frequently than the Unit Organizer but more than other routines, including the LINCing routine, Word Mapping, and Concept Comparison. Many students reported the Unit Organizer being most used and applicable in their core courses: mathematics, science, language arts, and social studies.

In year 2, classrooms continued primary use of the Unit Organizer but increased use of the FRAME device. Students used the FRAME device more frequently in their social studies and language arts courses and found it primarily helpful in organizing information learned in class.

Consistently among all project schools, the Unit Organizer was the most employed device, followed by slower but increased adoption of the FRAME device. Student responses indicated that the Unit Organizer prepared them for learning and that the FRAME device helped with structuring new information and details. For example, when asked about the Unit Organizer,

one student said, "It tells you exactly what you are going to learn, how long it's going to take, and how you're going to break it down to do it." Another student said that the Unit Organizer "helps me be prepared for what we are going to learn." When asked about the FRAME device, one student said, "The FRAME organized the information into chunks. I use it to help me study and review the material." Another student commented that the FRAME device "helps us know what we're learning and why it is important." Some students reported regularly employing the Unit Organizer; others reported using the FRAME device when studying for exams. Students remarked on their ability to study with the devices. Many students preferred the Unit Organizer and its greater versatility for learning; however, this finding is likely a result of disproportionate exposure to the two devices. Table 5 shows several students' responses to a HALO interview question: "How does this device help your learning?"

Question: How does this device help your learning?								
Unit Organizer	FRAME device							
We're on a schedule; we know what we're doing.	 It helps us know what we're learning and why it is important. 							
 It helps you know what you are doing or going to do. 	 It reviews what we learned. I use it to study. 							
 I can go back and look at it when I study. 	 To remember and practice for a test. 							
 I know what my teacher is going to teach for the week. 	 That helps us to study more easily. 							
 It keeps the main ideas organized. 	Because you can review.							
 It lets me know what I am going to learn. 	 To review—remember how to solve problems. 							
 It helps me be prepared for what we are going to learn. 	It helps me study.							
 To keep track and use it as notes. 	• Keeps me organized, gives me a better way to study new things.							
 It tells you exactly what you are going to learn, how long it's going to take, and how you're going to break it down to do it 	 Organized the information into chunks. I use it to help me study and review the material 							
 Gives me information, more ideas, something to refer back to. Documents what we're doing 	 It seems most helpful when there is a lot of information or a lot of steps to complete. 							
 It's a good study source 	 It helps me to improve my learning. 							
 To know and be prepared for the unit we have to do in the next week. 	 Look back over to see what I did wrong. To study when we have tests. 							
 It helps us to be prepared to learn throughout the year. 	Helps me by keeping my notes in one place.							
It connects all units.	• Keep[s] the big picture in mind.							

Table 5. Sample responses to HALO interview question

Quantitative Data Analysis

We used the academic outcomes described in the logic model to investigate the third question of the program evaluation: "Is SIM/CLC implementation related to improved student academic outcomes or student behaviors?" The evaluation of academic outcomes focused on the following:

- 1. Growth in overall reading achievement across 1 year in *RAISE^{up} Texas* schools compared to similar, nonparticipating schools
- 2. Growth in reading achievement of at-risk students across 1 year in RAISE^{up} Texas schools
- 3. Differences in passing rates in mathematics, science, and writing from year to year in *RAISE^{up} Texas* schools compared to similar, nonparticipating schools

Analyses for both year 1 and year 2 are included in this report. Year 2 analyses based on the State of Texas Assessments of Academic Readiness (STAAR) are not included because the 2013 STAAR scaled scores are not yet available to the evaluators.

Year 1 reading analysis. For focus 1 above – growth in overall reading achievement across 1 year in *RAISE^{up} Texas* schools compared to similar, nonparticipating schools – analyses included all students enrolled at relevant schools for whom both TAKS 2011 and STAAR 2012 reading scores were available. This analysis excluded students who took modified or alternative versions of either assessment. Findings are presented below. Table 6 shows 2012 mean scaled STAAR reading scores by grade for both the treatment group of project schools and the comparison group of matched schools. The table includes means and standard deviations (SD) for each group, as well as means that have been adjusted for 2011 TAKS (pretest) scores for the seventh- and eighth-graders. Additionally, effect sizes were calculated for each grade-level comparison. Effect sizes for seventh and eighth grades were negligible, which was expected for the first year of implementation.

		STAAR 2012 posttest means (SD)	STAAR 2012 adjusted posttest means ^a	Effect size ^b (Cohen's <i>d</i>)	
Crada	RAISE ^{up} Texas (n = 2,069)	1,588 (138.23)	N/A	10	
Grade o	Matched comparison ($n = 2,383$)	1,575 (130.59)	N/A	.10	
C 7	RAISE^{up} Texas (n = 1,545)	1,648 (127.40)	1,638	01	
Grade /	Matched comparison ($n = 1,762$)	1,629 (112.41)	1,637	.01	
Grade 8	RAISE ^{up} Texas (n = 2,309)	1,710 (130.27) 1,702		02	
	Matched comparison ($n = 2,134$)	1,691 (124.06)	1,699	.02	

Table 6. Reading achievement findings, 2011-2012

^aMeans have been adjusted for pretest differences in 2011 TAKS reading scale scores (for seventh- and eighth-graders).

^bUsing pooled standard deviation and posttest adjusted means where available.

For focus 2 – growth in reading achievement of at-risk students across 1 year in *RAISE*^{up} *Texas* schools – at-risk students were defined as those who screened at a Lexile score two or more grade levels below their current grade on the AIMSweb assessment **and** one standard deviation below the standard mean on the Gates-MacGinitie reading comprehension assessment. Some of these students took modified and/or alternative versions of statewide reading assessments (TAKS and STAAR). Because our definition of "at risk" centered on scores on screening measures administered as part of the project, at-risk students could not be identified at the matched comparison schools. The data showed some improvement from the beginning to the end of the year on the Gates-MacGinitie assessment.

Table 7 shows pretest and posttest Gates-MacGinitie scores for the at-risk students. For contextual purposes, the table includes the spring extended scale score total range for the corresponding fall percentile of the norming sample. This value provides an example of where an **untreated** group of students with a similar fall mean would be in the spring and can be thought of as an **expected** spring mean for similarly struggling students.

	Fall 2011 means (percentile rank)	Spring 2012 means (percentile rank)	Corresponding percentile rank, spring range
Grade 6, <i>n</i> = 144	455 (3rd)	465 (6th)	454–457
Grade 7, <i>n</i> = 147	472 (3rd)	490 (10th)	471–476
Grade 8, <i>n</i> = 106	481 (5th)	493 (9th)	483–487

Table 7. Pretest and posttest Gates-MacGinitie scores for at-risk RAISE^{up} Texas students

Note. Means reported are extended scale scores (or "growth" scores), which can be compared across grade levels and time.

As shown above, the *RAISE^{up} Texas* students scored well above the corresponding (by percentile) norm group at the end of the year on the Gates-MacGinitie assessment. Improvements from the fall of 2011 to the spring of 2012 were consistently larger for the struggling group than those for the percentile rank norming group at the corresponding fall mean. Another way to think of this finding is to compare fall percentile ranks with spring percentile ranks for the group of struggling students. In a typical school year, the percentile rank would remain the same from fall to spring. The *RAISE^{up} Texas* struggling students' percentile rank increased by 3 to 7 percentage points during the 2011–2012 school year.

Year 1 mathematics, science, and writing descriptive comparisons. For focus 3 above – differences in passing rates in mathematics, science, and writing from year to year in *RAISE*^{up} *Texas* schools compared to similar, nonparticipating schools – analyses included all students enrolled at relevant schools for whom both TAKS 2011 and STAAR 2012 mathematics, science, and writing scores were available. This analysis excluded students who took modified or alternative versions of either assessment. In addition, for the 2012 STAAR scores, the state determined two cut scores to have "satisfactorily" met the standards. The first cut score was based on a study that bridged the 2011 TAKS administration with the 2012 STAAR administration, providing a raw STAAR 2012 score that was equivalent to the "satisfactory" TAKS score from 2011. The second cut score came from the STAAR standards, released in January 2013, which were based on STAAR scaled scores (also released that month). These scaled scores were categorized into three phases. For this evaluation, we used "Phase I" passing standards. Passing rates based on both standards are included when available.

Means and passing rates for TAKS 2011 are included only to demonstrate the closeness of the match between project and comparison schools. It should also be noted that mean comparisons are more powerful than passing rate comparisons because the passing rate excludes a lot of valuable information (e.g., the percentage of students in each school who were below but very close to the passing standard). Although it may be tempting to compare the **change** in passing rates from 2011 to 2012 for project versus matched comparison schools, these contrasts are not appropriate or reliable. The comparison of interest here is the within-year contrast for STAAR 2012, which in all cases was very small, as anticipated during the first year of implementation (of both the project **and** the assessment).

Table 8 shows 2012 mean scaled STAAR mathematics scores by grade for both the treatment and comparison groups. For sixth and eighth grades, passing rates slightly favored the project schools over the matched comparisons. For seventh grade, however, passing rates using the STAAR standards were higher for the matched comparison group.

		TAKS 2011 math scale score	Met TAKS standard in 2011	STAAR 2012 math scale score	Met 2011 TAKS standard in 2012	Met STAAR standard in 2012
Grade 6	RAISE ^{up} Texas	—	—	1,631.16 (<i>n</i> = 2,033)	84%	80%
	Matched comparison	—	—	1,616.54 (<i>n</i> = 2,328)	82%	78%
Cue de 7	RAISE ^{up} Texas	737.01 (<i>n</i> = 2,189)	84%	1,633.33 (<i>n</i> = 1,927)	82%	70%
Grade 7	Matched comparison	712.19 (<i>n</i> = 2,349)	80%	1,627.01 (<i>n</i> = 2,287)	82%	72%
Grade 8	RAISE ^{up} Texas	758.63 (<i>n</i> = 2,234)	84%	1,693.93 (<i>n</i> = 2,206)	81%	79%
	Matched comparison	745.95 (<i>n</i> = 2,330)	81%	1,679.05 (<i>n</i> = 2,391)	79%	77%

Table 8. Passing rates on statewide mathematics assessments, 2011-2012

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards and STAAR 2012 standards is the same as the number of students used to calculate the associated mean.

Table 9 shows 2012 mean scaled seventh-grade STAAR writing scores for both the treatment and comparison groups. Although no formal analyses were conducted, passing rates and mean scale scores were higher for the project group than for the matched comparison.

			TAKS 2011 writing scale score	Met TAKS writing in 2011	STAAR 2012 writing scale score	Met TAKS standard in 2012	Met STAAR standard in 2012
	Grade 7	RAISE ^{up} Texas	2,398.14 (<i>n</i> = 2,278)	93%	3,777.87 (<i>n</i> = 1,920)	—	67%
		Matched comparison	2,358.92 (<i>n</i> = 2,278)	91%	3,694.03 (<i>n</i> = 2,230)	_	62%

Table 9. Passing rates on statewide writing assessments, 2011-2012

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards and STAAR 2012 standards is the same as the number of students used to calculate the associated mean. TAKS standards using cut scores from the bridge study were not available.

Table 10 shows 2012 mean scaled eighth-grade STAAR science scores for both the SIM/ CLC implementing schools and their matched comparison. Like the writing assessment, no formal analyses were conducted, but both passing rates and mean scale scores were slightly higher for the project group than for the matched comparison.

Table 10. Passing rates on statewide science assessments, 2011-2012

		TAKS 2011 science scale score	Met TAKS science in 2011	STAAR 2012 science scale score	Met TAKS standard in 2012	Met STAAR standard in 2012
Grade 8	RAISE ^{up} Texas	2,292.55 (<i>n</i> = 2,096)	77%	3,858.06 (<i>n</i> = 2,219)	—	73%
	Matched comparison	2,280.33 (<i>n</i> = 2,272)	70%	3,809.45 (<i>n</i> = 2,302)		70%

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards and STAAR 2012 standards is the same as the number of students used to calculate the associated mean. TAKS standards using cut scores from the bridge study were not available.

Year 2 historical analyses. Due to changes in the 2012–2013 sample described earlier, analyses were redone, using the year 2 sample. The 2011–2012 analyses for the new group of project schools and matched schools are presented below to preserve the opportunity for longitudinal analyses and comparisons of within-year analyses from year to year. In other words, the analyses in this section mirror those presented above (same content areas, outcome measures, and years); **however**, they represent the new, or year 2, sample of seven project schools and seven matched comparison schools.

For focus 1 – growth in overall reading achievement across 1 year in *RAISE^{up} Texas* schools compared to similar, nonparticipating schools – analyses included all students enrolled at relevant schools for whom both TAKS 2011 and STAAR 2012 reading scores were available. This analysis excludes students who took modified or alternative versions of either assessment. Table 11 shows findings for the STAAR reading assessment while controlling for 2011 TAKS reading scores. Again, effect sizes were very small, which was expected for the first year.

		STAAR 2012 posttest means (SD)	STAAR 2012 adjusted posttest means ^a	Effect size ^b (Cohen's d)	
Crada 6	RAISE ^{up} Texas (n = 1,732)	1,571 (126.77)	N/A	05	
Grade o	Matched comparison ($n = 1,831$)	1,565 (129.93)	N/A	.05	
Cueda 7	RAISE ^{up} Texas (n = 1,211)	1,628 (115.38)	1,628	01	
Glaue /	Matched comparison (<i>n</i> =1,304)	1,627 (118.95)	1,628	01	
Grade 8	RAISE ^{up} Texas (n = 1,942)	1,701 (124.81)	1,701 (124.81) 1,701		
	Matched comparison ($n = 1,896$)	1,702 (129.84)	1,702	01	

Table 11. Reading achievement findings for the year 2 groups, 2011–2012

^aMeans have been adjusted for pretest differences in 2011 TAKS reading scale scores (for seventh- and eighth-graders).

^bUsing pooled standard deviation and posttest adjusted means where available.

Table 12 shows mean scale scores for the 2011 TAKS and 2012 STAAR reading assessments and the mean percentage of students who met the satisfactory standard for those years. These analyses use only the new 2012 STAAR standards for passing, based on the STAAR scaled scores. For seventh and eighth grades, the percentages passing were approximately equal for project and comparison students. For sixth grade, a slightly higher percentage of project students met state standards.

Table 12. Reading achievement for the year 2 groups, 2011–2012

		TAKS 2011 reading scale score	Met TAKS standard in 2011	STAAR 2012 reading scale score	Met STAAR standard in 2012
Grade 6	RAISE ^{up} Texas	—	—	1,571.01 (<i>n</i> = 1,732)	69%
	Matched comparison	—	—	1,565.04 (<i>n</i> = 1,831)	66%
Crada 7	RAISE ^{up} Texas	731.49 (<i>n</i> = 1,826)	82%	1,626.71 (<i>n</i> = 1,662)	71%
Grade 7	Matched comparison	723.78 (<i>n</i> = 1,937)	78%	1,631.45 (<i>n</i> = 1,970)	71%
Grade 8	RAISE ^{up} Texas	768.24 (<i>n</i> = 1,845)	83%	1,688.71 (<i>n</i> = 2,237)	81%
	Matched comparison	764.77 (<i>n</i> = 1,939)	82%	1,687.87 (<i>n</i> = 2,304)	81%

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards and STAAR 2012 standards is the same as the number of students used to calculate the associated mean.

Focus 2– growth in reading achievement of at-risk students across 1 year in *RAISE*^{up} *Texas* schools – was approached by first defining at-risk students as those who screened at a Lexile score two or more grade levels below their current grade on the AIMSweb assessment **and** one standard deviation or more below the standard mean on the Gates-MacGinitie reading comprehension assessment. Some of these students took the modified and/or alternative versions of statewide reading assessments (TAKS and STAAR). Because our definition of "at risk" centered on scores on screening measures administered as part of the project, at-risk students could not be identified at the matched comparison schools. Table 13 shows pretest and posttest Gates-MacGinitie scores for the at-risk students. For contextual purposes, the table includes the spring extended scale score total range for the corresponding fall percentile of the norming sample. This value provides an example of where an **untreated** group of students with a similar fall mean would be in the spring and can be thought of as an **expected** spring mean for similarly struggling students.

	Fall 2011 means (percentile rank)	Spring 2012 means (percentile rank)	Corresponding percentile rank, spring range
Grade 6, <i>n</i> = 138	455 (3rd)	465 (6th)	454–457
Grade 7, <i>n</i> = 124	474 (4th)	489 (10th)	474–476
Grade 8, <i>n</i> = 104	481 (5th)	492 (9th)	483ª

Table 13. Pretest and p	osttest Gates-MacGinitie scor	es for at-risk RAISE ^{up} Texas students
-------------------------	-------------------------------	---

Note. Means reported are extended scale scores (or "growth" scores), which can be compared across grade levels and time.

^aFor eighth grade, the corresponding percentile rank spring score was a single value, not a range of values.

As shown above, the *RAISE^{up} Texas* students scored well above the corresponding (by percentile) norm group at the end of the year on the Gates-MacGinitie assessment. Improvements from the fall of 2011 to the spring of 2012 were consistently larger for the struggling group than for those of the percentile rank norming group at the corresponding fall mean. Another way to think of this finding is to compare fall percentile ranks with spring percentile ranks for the group of struggling students. In a typical school year, the percentile rank would remain the same from fall to spring. The *RAISE^{up} Texas* struggling students' percentile rank increased by 3 to 6 percentage points during the 2011–2012 school year.

Tables 14 and 15 show statewide reading assessment outcomes for at-risk students. When looking at the satisfactory standards, passing rates were higher for project schools only when based on the equivalent (or "bridge") TAKS 2011 standard. This improvement is not found with the new STAAR 2012 standards, which, as described earlier, was also the case for **all** students in project and matched schools (not just at-risk students).

	TAKS 2011 reading scale score	Met TAKS standard in 2011	STAAR 2012 reading scale score	Met TAKS 2011 standard in 2012	Met STAAR standard in 2012
Grade 7	608 (<i>n</i> = 78)	35%	1,518 (<i>n</i> = 91)	49%	31%
Grade 8	636 (<i>n</i> = 73)	32%	1,523 (<i>n</i> = 80)	58%	31%

Table 14. Passing rates on reading assessments for at-risk RAISE^{up} Texas students, 2011–2012

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards is the same as the number of students used to calculate the associated mean.

Table 15. Passing rates on modified or alternative statewide reading assessments for at-risk *RAISE^{up} Texas* students, 2011–2012

	TAKS 2011 scale score	Met TAKS standard in 2011	STAAR 2012 reading raw score	Met TAKS 2011 standard in 2012
Grade 7	2,233 (<i>n</i> = 21)	90%	21 (<i>n</i> = 21)	90%
Grade 8	2,171 (<i>n</i> = 7)	57%	22 (<i>n</i> = 7)	86%

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards is the same as the number of students used to calculate the associated mean. STAAR 2012 scale scores and standards were not available for this subgroup.

For focus 3 – differences in passing rates in mathematics, science, and writing from year to year in *RAISE^{up} Texas* schools compared to similar, nonparticipating schools – for year 2, scaled STAAR 2012 scores in mathematics, reading, and writing for *RAISE^{up} Texas* and matched schools were compared. Table 16 shows 2012 mean scaled STAAR mathematics scores for both the treatment group of seven project schools and the matched comparison group of seven schools. For all grades, passing rates favored the project groups.

Table 16. Mathematics achievement for the year 2 groups, 2011–2012

		TAKS 2011 math scale score	Met TAKS standard in 2011	STAAR 2012 math scale score	Met 2011 TAKS standard in 2012	Met STAAR standard in 2012
Crada 6	RAISE ^{up} Texas	—	—	1,611.99 (<i>n</i> = 1,705)	83%	79%
Grade o	Matched comparison	—	—	1,597.50 (<i>n</i> = 1,781)	78%	74%
Grade 7	RAISE ^{up} Texas	730.70 (<i>n</i> = 1,817)	84%	1,624.07 (<i>n</i> = 1,609)	81%	69%
	Matched comparison	717.52 (<i>n</i> = 1,944)	79%	1,628.66 (<i>n</i> = 1,909)	80%	68%
Grade 8	RAISE ^{up} Texas	751.12 (<i>n</i> = 1,840)	83%	1,698.78 (<i>n</i> = 2,034)	83%	80%
	Matched comparison	749.16 (<i>n</i> = 1,942)	79%	1,696.57 (<i>n</i> = 2,174)	80%	78%

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards and STAAR 2012 standards is the same as the number of students used to calculate the associated mean.

Table 17 shows 2012 mean scaled seventh-grade STAAR writing scores for both the treatment and comparison groups. Passing rates slightly favored the project group over the matched group; however, the mean scale writing score was slightly higher for the matched comparison group.

		TAKS 2011 writing scale score	Met TAKS writing in 2011	STAAR 2012 writing scale score	Met 2011 TAKS standard in 2012	Met STAAR standard in 2012
6 H 7	RAISE ^{up} Texas	2,375.30 (<i>n</i> = 1,823)	92%	3,663.59 (<i>n</i> = 1,507)	—	62%
Grade /	Matched comparison	2,373.69 (<i>n</i> = 1,896)	91%	3,691.42 (<i>n</i> = 1,709)		60%

Table 17. Writing achievement for the year 2 groups, 2011–2012

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards and STAAR 2012 standards is the same as the number of students used to calculate the associated mean. TAKS standards using cut scores from the bridge study were not available.

Table 18 shows 2012 mean scaled eighth-grade STAAR science scores for both the SIM/ CLC implementing schools and their matched comparison. Although passing rates favored the project group, the mean scale science score was slightly higher for the matched comparison group.

Table 18. Science achievement for the year 2 groups, 2011–2012

		TAKS 2011 science scale score	Met TAKS science in 2011	STAAR 2012 science scale score	Met TAKS standard in 2012	Met STAAR standard in 2012
Cur la 0	RAISE ^{up} Texas	2,269.12 (<i>n</i> = 1,713)	76%	3,786.93 (<i>n</i> = 1,821)	—	70%
Glaue o	Matched comparison	2,265.10 (<i>n</i> = 1,899)	74%	3,791.33 (<i>n</i> = 1,921)	_	67%

Note. The number of students used to calculate the percentage meeting TAKS 2011 standards and STAAR 2012 standards is the same as the number of students used to calculate the associated mean. TAKS standards using cut scores from the bridge study were not available.

Year 2 reading analysis. This section contains analyses for year 2 of implementation (2012–2013) for the same sample as the last section (the year 2 sample of seven project schools and seven matched schools). As noted earlier, evaluators are in the process of obtaining 2013 STAAR scale scores. However, analyses of all year 2 screening and Gates-MacGinitie scores are complete and reported here.

For year 2, focus 2 – growth in reading achievement of at-risk students across 1 year in *RAISE^{up} Texas* schools – was approached by first defining at-risk *RAISE^{up} Texas* students as those who screened one or more standard deviations below the standard mean on the Gates-MacGinitie reading comprehension assessment (equivalent to a standard score of 85 or below). Again, at-risk students could not be identified at the matched comparison schools.

Table 19 shows pretest and posttest Gates-MacGinitie scores for the at-risk group of students. Pretest scores for this sample were obtained in either the spring of 2012 or the fall of 2012. When students were administered the Gates-MacGinitie at both time periods, the fall of 2012 scores were used as the pretest scores. As for year 1, the table includes the spring extended scale score total range for the corresponding fall percentile of the norming sample. This value provides an example of where an **untreated** group of students with a similar fall mean would be in the spring and can be thought of as an **expected** spring mean for similarly struggling students.

Table 19. Pretest and posttest Gates-MacGinitie scores for at-risk RAISE^{up} Texas students

	Pretest means (percentile rank)	Spring 2013 means (percentile rank)	Corresponding percentile rank, spring range
Grade 6, <i>n</i> = ##*	46((6th)	47* (1\$th)	465–46)
Grade 7, <i>n</i> = \$" +	46) (2nd)	48%()th)	46&-471
Grade 8, <i>n</i> = # &	48\$(5th)	48' ((th)	483ª

Note. Means are extended scale scores (or "growth" scores), which can be compared across grade levels and time. Pretest scores were obtained in either spring of 2012 or fall of 2012.

^aFor eighth grade, the corresponding percentile rank spring score was a single value, not a range of values.

As we saw for year 1, in all three grade levels, *RAISE^{up} Texas* students scored above the corresponding (by percentile) norm group at the end of the year on the Gates-MacGinitie assessment. For sixth, seventh, and eighth grades, improvements from the spring/fall of 2012 to the spring of 2013 were consistently larger for the struggling group than for the percentile rank norming group at the corresponding fall mean. As shown above, the *RAISE^{up} Texas* struggling students' percentile rank increased by 5 to 6 percentage points for sixth and seventh grades during the 2012–2013 school year.

Recommendations

The recommendations that follow are based on the results above and focus on program strengths and weaknesses and evaluation limitations. More recommendations will follow when student academic outcomes and variables are obtained for year 2. Because this is a midproject report, some of these recommendations have already been implemented.

Recommendation 1: Streamline the Data Flow Between Project Districts and Evaluators

Rationale. Accurate measurement of the *RAISE^{up} Texas* outcomes requires project districts and Education Service Center Region 13 to provide several student-level variables and assessment scores to the evaluators. These data include student scores on the STAAR and pretest and posttest scores for the Gates-MacGinitie. Analyses cannot be conducted unless **all** project schools and their matches provide complete and correct data.

Anticipated result. Improvements to the data flow have already been implemented through a mutually agreed-to and adopted evaluation calendar. This calendar provides a detailed list of required variables and expected deadlines for each project school and match school. The calendar allows each school to see what has been provided to the evaluators on time and what is missing or late.

Further, the evaluators now provide scores for the Gates-MacGinitie, eliminating the need for school representatives to score the Gates-MacGinitie before sending it to evaluators. This change has enhanced our ability to conduct timely analyses for at-risk students.

Recommendation 2: Continue SIM/CLC Training and Support for Current and Incoming Teachers at Project Schools

Rationale. As seen in the fidelity trends for year 1 and year 2, growth in SIM/CLC device and routine implementation has been found for all project schools. By the end of year 2, all schools consistently implemented routines and devices in the classroom. Evaluator walkthroughs revealed a continuous increase in the use of SIM/CLC routines and devices. Continued support and training for SIM/CLC assures that teachers will continue to use these devices and incorporate new ones.

Anticipated result. If SIM/CLC support continues to grow, the evaluators anticipate that fidelity trends in the project schools will continue to show improvement. In year 3 of *RAISE^{up} Texas*, all project schools should continue to show evidence of consistent implementation of SIM/CLC practices. Like in the spring of 2013, evaluators who conduct the campus visits in the fall of 2013 should continue to see the advanced level of implementation. Increased fidelity in implementation will allow the evaluators to connect any student progress to project implementation.

Appendix

G`[fAdYS`[]Wd6VM[UN5ZWJ]/[ef

Adapted from The Unit Organizer Routine. Coovrichts for the temolate are held by the authors of The Unit Organizer Routine.

Essential details U Main idea So What? (What's important to understand about this?) is about... **Essential details** Key Topic ─ Main idea The FRAME Routine **Essential details** U Main idea 1. Focus on the topic

5. Extend understanding

4. Make a "so what" statement

3. Analyze the details

2. Reveal the main ideas

FRAME Device

Learning Strategies and Instructional Stages

Learning Strategies

- Paragraph Writing
- Fundamentals or Proficiency of Sentence Writing
- Fundamentals of Summarizing and Paraphrasing
- Paraphrasing
- Word Identification and Mapping
- Inference
- Self-Questioning
- Possible Selves

Instructional Stages

The teacher will be in only one of these stages during a lesson.

Describe: Tell students the steps of the strategy and how to use them.

Model: Demonstrate how to use the strategy while thinking aloud.

Verbal practice: Provide rapid-fire practice of the strategy steps and verbal elaboration about how and when to use the strategy.

Controlled practice: Use material at the student's performance level.

Advanced practice: Use material at grade level or at least two levels from controlled practice.

Posttest: Use grade-level material.

Generalization: Discuss with students how the strategy can be used with a variety of reading materials; practice with grade-level material.

Cue-Do-Review Checklist

RAISE^{UP} TEXAS DEMONSTRATION SITES 2012-2013

Date	Scho	ol	Content/Subject Gr		Devices/Linking Steps Observed:	
9-27	Example		Biology	8	Comparison Table	
<u>B</u>	М	Е	Period # <u>5</u> <u>1:00</u> t	0 <u>1:50</u>	COMPARING	
	Obs/time	Teache	er behavior	Obs/time	Student behavior	Evidence
	yes	Teache	er:	not	Students:	Teacher díd not ask
		cues an	d names the device	observed	recognize the device	students any
		(remine	ls students).		and appear to	questíons, no student
					understand how to use	named the device
	u ot	a alva av	actions about the	u ot	the device.	
E	observed	rationa	le for the device	observed	appear to understand	
		and/or	explains		adaptations and/or	
0	C		tions/extensions.		extensions of the	
		-	•		device.	
	yes	remind	s students about	yes	acknowledge the	20/28 students looked
		expecta	tion to take notes.		expectation and get	at device with pen/paper
					ready – nod, look at the	ready
					device, have a	
	Mes	Teache	.r.	Mes	Students	5 students called on to
	9	remind	s students of the	50-	collaborate to complete	contríbute ídeas
		Linking	Steps they will use in		the device under	
		the crea	ation of the device.		teacher guidance.	
	yes	prompt	s students to	not	assume <u>leadership</u> in	Students only
		particip	bate in the	observed	the construction of the	responded to teacher
		constru	ction of the device.		device.	prompts
	yes	supervi	ses students as they	yes	construct and/or use	28/28 students
		needed			work	durína class
	LARS	monito	rs the quality of	LARS	nroduce high quality	28/28 students
	9	student	work to ensure high	9-2	work and show they	completed relevant
		quality	and high rates of		have learned the critical	frames
		learnin	g.		content.	`
	not	uses the	e device in a variety	yes	are <u>engaged</u> in using the	28/28 students
	observed	of ways			device.	completed device
	yes	Teache	er:	yes	Students:	3 students called on to
		device	inks to and guides		device helps them learn	unswer quescions
•		learnin	g.		active helps them learning	
3	yes	asks sti	idents questions	not	use the device to	No students raísed
Ē	Ŭ,	about h	ow they will use the	observed	organize learning,	hand, none called on
E		device a	and prompts		prepare for	
		general	ization.		assessments, or	
H	1485	romind	e /prompte /discussor	1400	report using device to	5 students mentioned
	yes	use of t	he device beyond	yes	organize learning.	other classes they used
		class.	ne actrice beyond		prepare for tests or	device (sometimes to
					complete assignments	help with homework)
					outside this class.	

Content Enhancement Routines Observation Checklist: Fidelity of Implementation

*Adapted from: Revised RUSD CLC Project; 1-16-2010 (KU approved)

RAISE^{UP} TEXAS DEMONSTRATION SITES 2012-2013

Learning Strategies Observation Checklist and Notes

- **D** Paragraph Writing
- □ Fundamentals or Proficiency of Sentence Writing
- □ Fundamentals of Summarizing and Paraphrasing
- □ Paraphrasing
- □ Word Identification/Mapping
- □ Inference
- □ Self Questioning
- Possible Selves

Notes: <u>Although I didn't see any learning strategies</u>, I overheard one student mention that this was

líke the word mapping he learned in Ms. X's class.

*Adapted from: Revised RUSD CLC Project; 1-16-2010 (KU approved)

Unit Organizer Device Checklist

Fidelity of Implementation

Teacher:	Observer:
School:	Content/subject:
Date:	

Directions: Put a checkmark (\checkmark) by each behavior that you observe.

Bigger Pict	ure and Unit Names	p. 7 in Unit Organizer manual
	Bigger Picture creates a context for students and is written in the Bigger Picture box. (Io together or helps students understand what multiple units have in common.)	lea or theme ties several units
	Current Unit Name provides a big idea for the unit and is written in the Current Unit box or a teacher-created name that helps students tie together ideas and information.)	x. (May be a section of a textbook
	Name of the previous unit is written in Section 2.	
	Name of the next unit is written in Section 3.	
	Bigger Picture and Unit Names (previous, current, and next units) hang together and cr students.	eate a coherent context for
Unit Map	рр	. 7–8 in Unit Organizer manual
	Paraphrase is a clear translation of the main idea of the unit.	
	Paraphrase is written in words that students can easily understand.	
	Paraphrase contains words that reveal the central idea that students will learn.	
	Paraphrase may be a definition of the main idea.	
	Paraphrase is short.	
	Content Map depicts how the content of the unit is organized.	
	Unit parts (bubbles) contain a few key words for each important part of the unit.	
	Unit parts (bubbles) are limited to the most important parts (usually seven or fewer).	
	Lines are drawn between the shapes to show how the parts relate to the main idea.	
	Labels on the lines show the relationships, so that students can read the unit name and connected, complete sentence.	paraphrase; each unit part is a
	Content structure of the map is limiting (helps students chunk), connected, linear, hiera simple.	archical (shows relationships), and

Unit Relat	onships	p. 8 in Unit Organizer manual
	Two or more major relationships listed in the Unit Relationships box show how the teac about key concepts in the unit (higher-order thinking skills that are needed to understa	her wants the students to think nd the unit).
	Relationships listed are reflected in the paraphrase, the unit parts, and the unit questio	ns.
Unit Quest	ions	p. 8 in Unit Organizer manual
	Questions listed in the Unit Questions box focus on the big ideas that students should k	now by the end of the unit.
	Questions are limited to the most important ideas (generally four or five questions).	
	Unit questions are coherent with the other parts of the unit.	
Unit Sched	ule	p. 8 in Unit Organizer manual
	Major activities and assignments for the unit are listed (possibly) in the schedule box w	ith proposed dates.
	Activities and assignments are linked to the mapped parts of the unit and support the l	earning of the unit.
Expanded (Check if u	Unit Map and Questions sed or mark "NA" if not used.)	p. 8 in Unit Organizer manual
	Expanded map provides a more detailed understanding of unit concepts.	
	Map meets all of the criteria for unit map above (limited to most important information coherent with other parts of unit).	n, has lines and line labels, and is
	Shapes (square, diamond, etc.) show different levels of subtopics and clearly show how	all of the parts are related.
	New unit questions meet criteria above.	
Overall		
	Unit Organizer makes abstract and complex ideas more concrete and understandable.	
	Information on the device is spaced well (not too much, not too crowded).	
	The entire unit is coherent.	
Comments		

FRAME Device Checklist

Fidelity of Implementation

Teacher:	Observer:
School:	Content/subject:
Date:	

Directions: Put a checkmark (\checkmark) by each behavior that you observe. If you observe an inappropriate use of the Framing Routine, go to Overall section, mark zeros on appropriate items, and stop recording.

Key Topic ar	Key Topic and Paraphrase pp. 11, 18 in the Framing Routir	
	Topic is key word(s) relating to critical information students need to understand in a ur event).	nit (e.g., important concept, idea,
	The paraphrase captures the essence of the topic.	
	The paraphrase is a short explanation or a definition of the topic in student-friendly language.	
	The paraphrase connects the topic to students' prior knowledge.	
Main Ideas pp. 18–		in the Framing Routine manual
	Main ideas clearly relate to the topic.	
	Main ideas are essential for understanding and grasping the significance of the topic (critical information).
	Relationships between the main ideas and/or between the main ideas and the topic as upon one another).	re parallel and coherent (e.g., build
	Main ideas are foundational for information to be learned later in the course, in the ne	xt course, or later in life.
Essential Details pp. 19–20 in the Framing Routine man		in the Framing Routine manual
	Essential details are critical for understanding the main idea.	
	Details are what all students should know about the main idea and what will be assess	sed.
	Details are not trivial information.	
	Detail boxes contain a few key words (rather than long sentences).	
"So What" Statement p. 20 in the Framing Routine manual		
	Draft of a statement to explain how the current topic relates to the unit of study, how solve a "real-world" problem, or how the information relates to students' lives.	knowledge of the topic can help to
	Crystallizes the conclusion or understanding from exploring the topic.	

Extend Un	derstanding	p. 21 in the Framing Routine manual
	The activity the teacher has created will extend students' understanding of the prioritizing with specific criteria, speculating about what might have happened anticipating, connecting ideas).	topic (e.g., prioritizing importance, d [what if], forecasting, predicting,
Extend Understanding p. 21 in the Framing Routine manual		
	FRAME focuses on critical content (permeating, foundational, and enduring un	derstanding).
	FRAME makes abstract, complex content more understandable for students.	
	FRAME is a useful tool for studying (includes the important information that will be assessed in a unit, course, or state assessment).	